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Abstract: Research on the Arthropoda distribution in temperate forest ecosystems has shown that
communities are distributed vertically in unequal numbers. However, this issue still has research gaps
in relation to the vertical stratification of Coleoptera in pine forests of the temperate zone. This study
was conducted in the Republic of Mordovia situated in central part of European Russia. We used
fermental traps to collect Coleoptera (the bait is fermenting beer with sugar and honey). The sampling
was conducted from May to September 2021 in five sites of pine forests. One hundred and twenty-five
species from 36 families were identified. The highest species richness was found in Nitidulidae and
Cerambycidae (19 species each), Elateridae (13), Curculionidae (7) and Scarabaeidae (6). The highest
number of species (84 species) was obtained at the height of 1.5 m, while the smallest species richness
(44 species) was found at the height of 12.0 m. At the height of 12 m, we also registered the minimum
number of specimens. Twenty-four species from 11 families were common to all the heights studied.
Cryptarcha strigata and Glischrochilus grandis preferred heights of 3 and 1.5 m. Cryptarcha undata and
Protaetia marmorata were more common at a height of 7 m with a frequency of 61.4–79.6% and 68.2–79.6%,
respectively. The absolute number of saproxyl and anthophilic beetle species was higher in the ground
layer and at the undergrowth level. These studies expand our understanding of the vertical distribution
of beetles in pine forests of the temperate zone of European Russia.

Keywords: Insecta; species diversity; beer trap; saproxylic beetles; protected area; Mordovia State
Nature Reserve

1. Introduction

Among temperate ecosystems, pine forests have an outstanding richness of plant and
animal communities and biodiversity [1–4]. In the territory of Europe, coniferous forests
dominated by Pinus sylvestris L. are widely spread due to their high environmental and
economic importance (e.g., [5,6]). Although pine forests are generally characterized by
a lower biodiversity level in comparison with deciduous forests [7], P. sylvestris forms
habitats suitable for a large number of various organisms (e.g., [8,9]).

Forest systems are characterized by a high and spatially structured diversity of habi-
tats [10–17]. In recent years, the distribution of insects has been actively studied along ver-
tical gradients in forests of various zones, from tropical forests to temperate forests [18–23].
In floodplain forests in Germany, alpha and beta diversity of both rare and common beetle
species in undergrowth and canopy differed significantly. It was shown that the species
richness is higher in the undergrowth layer than in the forest canopy for common species,
but it is lower for rare beetle species [24]. In a Sulawesi rainforest, 56% more common
species out of 701 Coleoptera showed no preference for layers. However, there were species
expressing obvious preferences for a certain height, 39% out of them were specific to the
forest canopy and only 5% for the ground layer [25]. At the height of 10.5 m, the abundance,
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species richness and biomass of Cetoniinae were higher in trap set. In this case, traps
should be located at least 4.5 m above the ground [26]. The average number of Dicerca
divaricata (Buprestidae) specimens in traps with attractants was statistically significantly
lower in the undergrowth layer than in any other positions of traps [27]. Collections of
Monochamus galloprovincialis (Cerambycidae) individuals in traps located in tree crowns
were larger than in traps situated at low heights [28].

Traps placed in the canopy of deciduous forest at the height of 13 m caught signifi-
cantly more specimens of Agrilus planipennis (Buprestidae) than those placed at the ground
level [29]. The Ips duplicatus (Curculionidae) abundance in pheromone traps was higher at
the height of 1.5–2.0 m than in traps at the ground level or at the height of 3.5–4.0 m [30].
Using bait traps located at various heights, Miller et al. [31] found certain preferences
for many Coleoptera species. Among them, Cnestus mutilatus (Curculionidae), Neoclytus
scutellaris, and Monochamus titillator (Cerambycidae) confined to heights of 18–23 m, while
Xylosandrus crassiusculus, Dendroctonus terebrans (Curculionidae) and Neoclytus acuminatus
(Cerambycidae) were more frequent at the height of 0.3–0.5 m. In forest systems of the East-
ern Canada, the Cerambycidae diversity was higher in the canopy than in the undergrowth
layer, whereas their abundance was higher in the undergrowth layer compared with the
canopy layer [32]. In the understory layer of beech–fir and oak forests of France, there
was a higher abundance and richness of Coleoptera species [33]. In temperate deciduous
forests in Japan, the abundance and composition of flying Coleoptera varied depending on
layers and seasons: Elateridae were most common in the lower layer, while Attelabidae
and Cantharidae were most common in the upper layer of the forest [34].

In this paper, we used beer-baited traps, placed at various heights in the tree canopy,
to study the occurrence frequency, abundance and diversity of Coleoptera species along
the vertical gradient in pine forests in the Central European Russia.

2. Materials and Methods
2.1. Research Area

The study was conducted in the Republic of Mordovia (Temnikov district, Mordovia
State Nature Reserve: 54.42–54.56◦ N, 43.04–43.36◦ E) (Figure 1). The studied protected area
covers 321.62 km2. According to the natural zoning, the study area is located on the border
of the zone of coniferous–deciduous forests and the forest-steppe. In the Mordovia State
Nature Reserve, forests cover 89.3% of the entire protected area. This forest type represents
the largest refugium for threatened insects in the region. Thus, pine forests provide a high
diversity of habitats [35,36].Diversity 2022, 14, 622 3 of 22 
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thusiana (Vill.) H.P.Fuchs, Fragaria vesca L., Melampyrum pratense L., Vaccinium myrtillus L., 

Anthoxanthum odoratum L., Galium mollugo L., Agrostis gigantea Roth, Lysimachia europaea 

(L.) U.Manns & Anderb., Luzula pilosa (L.) Willd. and Calamagrostis arundinacea (L.) Roth. 

2.2. Sampling Procedures 

Coleoptera were collected from May to September 2021, a period when activity of 

insects is the highest. In each fragment of a pine forest, we collected samples at four 

heights. In this case, traps were located at a distance of no more than 15 m from each 

other. Between each fragment of a forest, where four traps were located at different 

heights, there was a certain distance indicated below. This distance between sample sta-

tions was an attempt to ensure an independence between samples. In total, there were 

five such forest fragments of the pine forest. Each fragment of a forest was a separate 

habitat. Each part of the forest was located no less than 0.8 km from each other and by 

representing an independent forest site. This distance is needed to obtain a representative 

sampling size, since it was previously demonstrated that the distance between traps should 

be at least 0.3 km [37]. 

In each sampling site, a set of four traps was installed on various heights (1.5, 3, 7 

and 12 m above the ground) on branches of trees. We selected these heights to facilitate 

Figure 1. Study sites in the Mordovia State Nature Reserve, European Russia.



Diversity 2022, 14, 622 3 of 21

The study was conducted in the green-moss pine forest. Pinus sylvestris L. forms the
canopy layer. The understory layer is quite thin, being represented by Betula pendula Roth,
and singular trees of Picea abies (L.) H.Karst. and Populus tremula L. In the undergrowth
layer, the following shrubs are represented: Sorbus aucuparia L., Rubus idaeus L. and Frangula
alnus Mill. with a total percent cover of ca. 35%. The ground layer vegetation is dominated
by Convallaria majalis L. (ca. 45%) with participation of Calamagrostis epigejos (L.) Roth
(ca. 5–7%). Other vascular plants of the ground layer are Dryopteris carthusiana (Vill.)
H.P.Fuchs, Fragaria vesca L., Melampyrum pratense L., Vaccinium myrtillus L., Anthoxanthum
odoratum L., Galium mollugo L., Agrostis gigantea Roth, Lysimachia europaea (L.) U.Manns &
Anderb., Luzula pilosa (L.) Willd. and Calamagrostis arundinacea (L.) Roth.

2.2. Sampling Procedures

Coleoptera were collected from May to September 2021, a period when activity of
insects is the highest. In each fragment of a pine forest, we collected samples at four heights.
In this case, traps were located at a distance of no more than 15 m from each other. Between
each fragment of a forest, where four traps were located at different heights, there was a
certain distance indicated below. This distance between sample stations was an attempt to
ensure an independence between samples. In total, there were five such forest fragments of
the pine forest. Each fragment of a forest was a separate habitat. Each part of the forest was
located no less than 0.8 km from each other and by representing an independent forest site.
This distance is needed to obtain a representative sampling size, since it was previously
demonstrated that the distance between traps should be at least 0.3 km [37].

In each sampling site, a set of four traps was installed on various heights (1.5, 3, 7 and
12 m above the ground) on branches of trees. We selected these heights to facilitate the
manual installation of traps without the need to climb trees or to use special techniques
or equipment to install traps. To avoid a possible edge effect, we installed traps inside
the forest areas. The total sampling was equal to 176 trap exposures, where there were
9 repetitions at each height (while there were eight repetitions in one plot).

All collections were conducted by traps made by authors. Each trap consisted of a 5 L
plastic container with an opening on one side at a distance of 10 cm from the bottom [37].
For bait, we used the beer mixed with honey and sugar. The collected insects in plastic bags
containing 70% alcohol were delivered from forest sites to the laboratory. Then, the collected
samples were sorted and stored in alcohol. In total, 15,117 specimens were studied.

2.3. Identification and Taxonomic Status of Samples

Coleoptera families were classified according to Bouchard and co-authors [38], with ad-
ditions [39]. We took into account changes from the Catalog of Palaearctic Coleoptera [40–46],
publications of Robertson and co-authors [47] for Cucujoidea, and Alonso-Zarazaga and
co-authors [48] for Curculionoidea. The nomenclature of beetles was standardized according
to the publications cited above, with addition of the Catalog of Palaearctic Coleoptera [49,50].
Years of description for some species are used according to Bousquet [51].

2.4. Data Analysis

We analyzed the number of trapped beetles per exposure time. Exposure time repre-
sented the period (counted in days) between installing a trap a taking the samples to be
analyzed; we collected a total of 44 exposure times for each height value. The occurrence
frequency is considered the ratio of the number of samples in which a taxon is present to
the total number of samples (counted in %). Saproxylic species were identified based on
approaches adopted in some publications [52–55]. We classified anthophilic beetles based
on our personal long-term observations.

The Jaccard index was used to assess the similarity of species composition between
applied heights. Those insects that could not be identified to the species levels were
discarded from the analyses. The diversity index of Shannon and the dominance index of
Simpson were calculated based on the collected data [56,57].
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All statistical analyses were performed using PAST 4.07 [58]. The ordination was
made using PCA (principal component analysis). Using this technique, we defined major
gradients in the spatial arrangement of the studied species selected for analysis. We used
the species abundance as response variables in PCA. For interpretation of the ordination
axes, groups of the used height were plotted onto the PCA ordination diagram as supple-
mentary environmental data. In the analysis, we included species represented by at least
100 specimens collected over the sampling period. The coefficient of determination (R2, or
R-squared) was used according to Moore et al. [59].

3. Results

As a result of the conducted research, 125 beetle species from 36 families (Appendix A)
were identified. Some specimens from the families of Staphylinidae, Nitidulidae, Throsci-
dae, Scraptiidae, Laemophloeidae and Scirtidae were not identified to the species level.
The highest species richness was recorded in Nitidulidae and Cerambycidae (19 species
each), Elateridae (13 species), Curculionidae (7 species) and Scarabaeidae (6 species)
(Figures 2 and 3). In total, these five families, along with the family Staphylinidae, in-
clude 95.8% of all identified specimens.
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Figure 2. The proportion of species in five Coleoptera families collected using beer traps at various
heights (see Appendix A).

Cryptarcha strigata (Fabricius, 1787) (5809 specimens in total), Glischrochilus grandis
(Tournier, 1872) (3028 specimens), Protaetia marmorata (Fabricus, 1792) (765 specimens),
Rhagium mordax (De Geer, 1775) (615 specimens) and Glischrochilus hortensis (Geoffroy, 1785)
(519 specimens) had the highest number of specimens in traps.

Twenty-four species from 11 families were common to all studied heights (Gnathoncus
buyssoni Auzat, 1917; Quedius dilatatus (Fabricius, 1787); Cetonia aurata (Linnaeus, 1758);
Gnorimus variabilis (Linnaeus, 1758); P. marmorata; Dalopius marginatus (Linnaeus, 1758);
Attagenus schaefferi (Herbst, 1792); Ctesias serra (Fabricius, 1792); Trogoderma glabrum (Herbst,
1783); Thanasimus femoralis (Zetterstedt, 1828); C. strigata; Cryptarcha undata (G.-A. Olivier,
1790); G. grandis; G. hortensis; Glischrochilus quadripunctatus (Linnaeus, 1758); Soronia grisea
(Linnaeus, 1758); Halyzia sedecimguttata (Linnaeus, 1758); Litargus connexus (Geoffroy, 1785);
Leptura quadrifasciata Linnaeus, 1758; Leptura thoracica Creutzer, 1799; Lepturalia nigripes
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(De Geer, 1775); Pachyta quadrimaculata (Linnaeus, 1758); and Rh. mordax; Anisandrus dispar
(Fabricius, 1792)).
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Figure 3. The proportion of specimens in five Coleoptera families collected using beer traps at
various heights.

The highest species richness (84 species) was found at the height of 1.5 m, and the
smallest number of species (44) was registered at the height of 12 m (Table 1). According
to the average number of specimens, the highest number of species was found at heights
of 1.5 m and 3 m (in average, 120 specimens). The minimum number of specimens was
recorded at the height of 12 m. The proportion of saproxylic beetles was lower at the height
of 1.5 m, while at other heights it is higher (Table 1). However, the absolute number of
saproxylic species was higher at the heights of 1.5 m and 3 m than at other heights. The
proportion of anthophilic species was also lower at the lower height. At the height of
12 m, the number of anthophilic species was the largest (Table 1). The absolute number of
saproxylic species at heights of 1.5 m and 3 m exceeded the number of saproxylic species at
other heights.

The Shannon and Simpson indices show the following results. At the height of 1.5 m,
the Shannon index reached its maximal value, while the Simpson index showed its minimal
value. Conversely, the minimal values of the Shannon index and maximal values of the
Simpson index were found at the height of 12 m. The intermediate values between these
values were obtained for other heights (Appendix A).

The values of the calculated Jaccard similarity index demonstrated certain differences
among the studied heights (Figure 4). The highest difference values were obtained between
heights of 1.5 m and 12 m. At the same time, differences were minimal between the heights
of 3 m and 7 m.
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Table 1. The main parameters of Coleoptera individuals collected using beer traps at various heights.

Parameters
Height (m)

1.5 3 7 12

Total of families 28 24 17 18

Total of individuals 5281 5273 3335 1228

Mean number of individuals per trap 120 120 76 28

Number of species (excluding unidentified insects) 84 69 59 44

Number of saproxylic species 56 52 48 33

Proportion (%) of saproxylic species 66.7 75.4 81.4 75.0

Number of anthophilic species 34 34 26 24

Proportion (%) of anthophilic species 40.5 49.3 44.1 54.5

Shannon index 2.24 1.91 1.85 1.81

Simpson index 0.20 0.26 0.30 0.32
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Figure 4. The similarity of beetle species composition between four studied heights based on
the Jaccard index. We applied Ward’s method and Euclidean distance (cophenetic correlation
coefficient = 0.771).

During the experiment, it was shown that only 11 Coleoptera species had a total
number of more than 100 specimens (P. marmorata, C. serra, C. strigata, C. undata, G. grandis,
G. hortensis, G. quadripunctatus, S. grisea, L. thoracica, Rh. mordax and A. dispar). We calculated
the preferred heights for them.

The distant position of C. strigata and G. grandis along Principal Component 1 (PC1) in
Figure 5 reflects their highest relative abundance in the studied pine forest. These species
indeed had 3.5–92.5-fold and 1.6–47.8-fold, respectively, higher abundance at all heights in
comparison with other species. According to the number of trapped specimens, C. strigata
seems to prefer the 3 m height, followed by 1.5 m, while its abundance declined with an
increase in the height of the trap location. The same tendency was found for another of the
most-abundant species, G. grandis, which was characterized by higher abundance values at
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the heights of 3 m and 1.5 m; the abundance of this species was much lower at 7 m, falling
to an average value of 1.32 specimens per trap at 12 m (Figure 5).
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Figure 5. The diagram of the principal component analysis ordination of the selected beetle species in the
Republic of Mordovia (European Russia) based on the number of specimens collected at various heights
of trap positions (1.5 m, 3 m, 7 m, 12 m). Designations: P.mar.—Protaetia marmorata; C.ser.—Ctesias
serra; C.str.—Cryptarcha strigata; C.und.—Cryptarcha undata; G.gra.—Glischrochilus grandis; G.hort.—
Glischrochilus hortensis; G.quad.—Glischrochilus quadripunctatus; S.gris.—Soronia grisea; L.thor.—Leptura
thoracica; Rh.mor.—Rhagium mordax; A.dis.—Anisandrus dispar. Groups of heights of trap positions were
plotted onto the ordination diagram as supplementary environmental variables.

4. Discussion

This paper provides an idea of clusters of beetles captured using beer traps installed
at various heights in pine forests of the temperate zone of European Russia. Previously,
it was widely believed that temperate forests are less stratified than tropical forests be-
cause of the smaller structural differences and seasonal changes in climatic conditions that
force many species to migrate between layers [60]. However, subsequent studies, as well
as our research, have shown that beetle communities in the canopy differ from commu-
nities in the undergrowth. Longhorn and scarab beetles were studied by Touroult and
Dalens [61] using bait traps placed at three various heights: 3–5 m (undergrowth), 10–15 m
and 25–30 m (under canopy). It was found that, for longhorn beetles, the abundance is
higher in the undergrowth, while the richness is much higher in the canopy. For scarab
beetles, abundance and richness are the same in all three layers. In temperate deciduous
forests in Japan, beetle abundance was higher in the canopy relative to the understory [62].
In Ontario (Canada), a higher abundance of Coleoptera was found in the undergrowth of
coniferous forest [32].

In the European part of Russia, the species richness of Coleoptera falling into traps is
significant. The number of species from this order actively flying to beer bait is extremely
high and usually amounts to more than 90% of the total of Coleoptera specimens [63].
In these studies, we obtained similar results. As in other studies [37,63], this bait attracts
many Coleoptera species. However, there are species that can accidentally be caught by the
trap, which was demonstrated previously [63]. However, the number of such “accidental”
species is small and usually does not exceed 10%.

Our data showed that the abundance and species richness of Coleoptera in pine forests
are higher if the trap is set at heights of 1.5 m and 3 m. At the same time, the Shannon
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index was higher, and the Simpson index was lower at the ground layer than in tree crowns
(at heights of 7 m and 12 m). The species richness at the height of 1.5 m was considerable.
Similar results were obtained in the studies of Ulyshen and Hanula [64]. Therefore, in the
crowns of trees of temperate pine forests, there is little species richness and the dominance
of one or more species.

The found high richness is also consistent with the life habits of some Coleoptera
families, for example, with their nutrition and reproduction, as well as with the interactions
in which they participate, such as predation and competition [60]. There are some families
and species that constantly fall into traps. For example, the families Elateridae, Ceram-
bycidae, Staphylinidae and Curculionidae, by number, prevailed at the height of 1.5 and
3 m, i.e., closer to the soil and at the level of the undergrowth. In other studies of vertical
distribution, they were also recorded in the same layer of tropical forest [65] and temperate
deciduous forests [64,66]. It is likely that for some families this is due to the fact that the
humidity in the undergrowth may be higher than in the canopy. For example, Staphylinidae
are predominantly found in habitats with higher humidity; in addition, the understory also
provides this family with resources for nutrition [67,68]. The species richness of Elateridae
was almost the same at heights of 1.5, 3 and 7 m. These species are mainly saproxylic and
often prefer a grassy layer and the level of undergrowth in forests [53,69]. Some species of
Scolytinae (Curculionidae) were associated with heights of 7 m to 21 m, while other species
are associated with the height of 1.2 m [70].

Representatives of such families as Chrysomelidae, Anthribidae, Oedemeridae, Mordelli-
dae, Melandryidae, and Endomychidae were found only in the undergrowth. The species
of these families are mainly phytophages (including anthophiles) and mycetophages [71–73].
Thus, herbaceous plants and woody fungi growing in the pine forest provide food resources
for these species. For families such as Histeridae and Silphidae, the undergrowth also rep-
resents more favorable living conditions. Representatives of these families are necrophages,
coprophages and sometimes nidicoles [73,74].

On the other hand, the species of the Cleridae family were distributed evenly over
the entire vertical gradient. They are associated with woody plants and are predators of
various species of xylophagous insects (Bostrichidae, Ptinidae, Scolitinae, Buprestidae and
Cerambycidae); therefore, they act as important regulators of their populations [75,76]. The
number and species richness of Dermestidae were almost the same at heights of 1.5, 3 and
7 m, while in the crowns of trees, these indicators decreased. The larvae of these beetles are
necrophages, and imagoes are often found on flowering plants [73,77].

During the experiment, 11 species were represented by more than 100 specimens
(P. marmorata, C. serra, C. strigata, C. undata, G. grandis, G. hortensis, G. quadripunctatus,
S. grisea, L. thoracica, Rh. mordax and A. dispar). The average occurrence frequency of
these species ranged from 11 to 100%. These species have a wide range, and they are
distributed in the most diverse types of forests, forest parks and squares [78–82]. For
C. strigata, it is shown that the abundance of the species is maximal at heights of 1.5 and
3 m with the greatest occurrence frequency at the same heights. Imagoes of this species
live near the flowing fermenting juice of Q. robur, where its larvae develop, and are rarely
caught on the leaking juice of P. tremula. It is in such habitats that these species thrive the
most [83]. G. grandis is common on the decaying tree sap of birches and oaks, where the
larva develops. Imago was also found on polypores and rotting berries [84,85]. Previously,
a high abundance of this species was recorded in pine forests with a well-developed
undergrowth of deciduous trees [83]. G. hortensis prefers lower layers of the forest (1.5 m).
P. marmorata was clearly confined to the highest layer of the forest.

Rh. mordax was captured in the highest number at the height of 1.5 m. Rh. mordax
larvae develop under the bark of dead coniferous and deciduous trees, and imagoes also
prefer small heights for habitat in the forest [66,86]. Scolytinae beetles prefer to inhabit
lower parts of the canopy layer, so most of them are trapped at the height of 2 m and
lower [87,88]. In our studies, among the Scolytinae, A. dispar had the largest number in
traps; its individuals clearly preferred the level of undergrowth, including in deciduous
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forests [66]. The saproxylic species L. thoracica did not have a clear preference in the pine
forest. However, it was previously noted that mass collections of this species occur in
places with a predominance in the birch stand and in the crowns of trees of various forest
types [89,90]. Larvae of this species are polyphages of deciduous trees and live in dead,
rotten wood of thick trunks (e.g., Populus, Betula, Tilia, Salix and Fagus) [91,92].

In our study, the relative number of saproxylic beetle species was lower at the height of
1.5 m, whereas at other heights it increased. In temperate forests, saproxylic beetles include
30% of all Coleoptera taxa [93]. Moreover, the biodiversity of such species is higher in forests
with an increase in dead wood, stumps, dead trees and coarse wood debris [53,55,94,95].
For example, Vodka and Cizek [78] found that the saproxylic species richness was higher in
the undergrowth than in the canopy at the edge of the forest, while the opposite situation
was observed in depths of the forest. Preisser et al. [96] revealed that most of the studied
families are more numerous in traps at the ground level. Previous studies [97] showed that
the number of saproxyl beetle species was higher in well-illuminated forests and correlated
positively with temperature variability. Therefore, exposure to the sun (high temperature)
promotes the saproxyl beetle diversity due to the higher microclimatic heterogeneity within
and between dead wood logs. Of considerable importance for saproxylic species in the
ground layer of the forest are the composition of tree species, dead wood, fallen trees and
remains of stumps. Under specific conditions, for example, the increased temperature on
the forest ground layer, this can lead to an increase in the insect species richness of this
forest layer [98–101]. This is confirmed in studies by Weiss et al. [12], who proved that in
temperate forests, an increase in the proportion of saprophages near the ground layer is
caused by the accumulation of dead organic matter on the forest floor.

Our research confirmed earlier studies in deciduous forests [66]. Differences in the
vertical distribution of saproxylic species may be due to differences in bait sensitivity,
behavior, dispersal ability, microclimate, ecological interactions or spatial heterogeneity
of the nutrition quality and quantity [94,102]. For example, the difference in the vertical
structure of the longhorn species community correlated with a high number of flowering
plants, a high leaf area index, as well as with a high level of light intensity and steep relief
in pine forests [32]. At the same time, a higher density of snags and the amount of felled
wood are often recorded in such areas, which are important variables for the development
of Cerambycidae larvae [103]. Since most adult Cerambycidae are good fliers and spend a
lot of time feeding on flowers away from sites, which they inhabit, it is possible that adults
were more active in searching for flowering plants (almost all Cerambycidae we found were
anthophiles). In our study, in absolute terms, the number of saproxylic species at heights of
1.5 and 3 m exceeded the analogous indicator at other heights. A good herbaceous cover of
perennial grasses and a shrubby tier are a good food base for anthophilic species.

Earlier, using the example of five different forest areas with a predominance of indi-
vidual species of trees, it was shown that the highest species richness is observed in pine
forests, and the lowest one in oak forests [83]. When comparing the results obtained with
other studies in deciduous forests [66], this pattern persists. As a result, 92 Coleoptera
species belonging to 26 families were identified [66]. One hundred twenty-five species
from 36 families were obtained in pine forests. It is possible that a more significant biodi-
versity of Coleoptera in pine forests is associated with the microclimate of temperate pine
forests, characteristics of undergrowth and grassy layer, humidity, sunlight penetration
and other conditions. For example, in the Mediterranean pine forests in summer, the light
transmission of tree crowns is expressed to a greater extent. In addition, the soil moisture
in the undergrowth was lower than outside the areas where shrubs grow. Despite the
soil moisture decrease, in pine forests and in treeless areas, shrubs serve as safe places for
plant development due to the buffering of the microclimate in the summer period [104].
In Western Hungary, the middle part and the shrub layer of the pine forest played a key role
in maintaining a specific microclimate in forests having a close canopy. Such conditions are
favorable for sensitive taxa of forest specialists (for example, some forest grasses, epiphytic
mosses and lichens) [105]. At the same time, deciduous forests with high crown closeness
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contribute to the reduction in undergrowth and poor herbaceous cover, which ultimately
reduces the biodiversity of Coleoptera [66].

5. Conclusions

The research of beetles at various heights in temperate pine forests of the European
Russia allowed us to find 125 species from 36 families. The highest species richness
was revealed for Nitidulidae and Cerambycidae (19 species each), Elateridae (13 species),
Curculionidae (7 species) and Scarabaeidae (6 species). Eleven species had the maximal
abundance of individuals in traps, while twenty-four beetle species were common in all
studied heights. According to the absolute and average number of specimens, the number
of families and species, superiority was observed at heights of 1.5 m and 3 m. The minimal
number of specimens and the smallest species richness of beetles were found at the height
of 12 m. The highest differences in the Jaccard similarity index were obtained between
minimal, 1.5 m, and maximal, 12 m, heights. The values of the Shannon index were higher
at the ground layer compared to the tree crown, while values of the Simpson index were
characterized by the opposite trend. C. strigata and G. grandis had clear height preferences
(3 and 1.5 m). The specimen number of these species decreased with increasing height
of the trap position. C. undata and P. marmorata were more common at a height of 7 m
with a frequency of 61.4–79.6% and 68.2–79.6%, respectively. The absolute number of
saproxylic and anthophilic species was higher at the ground and undergrowth levels of
the forest. This study showed that there are still little data on the vertical distribution of
arthropod species inhabiting various forests of the temperate zone. To better understand
such regularities, we propose using a set of various methods of data collection, expand the
taxonomic composition of the studied arthropod groups, and increase the sampling efforts,
including the number of studied sites per research.
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Appendix A

Table A1. The mean number (M), total number of species (T) and the occurrence frequency of beetle specimens (O, %) collected using beer traps at various heights in
temperate forests, Republic of Mordovia, European Russia.

Taxon Name 1.5 m 3 m 7 m 12 m

T M O T M O T M O T M O

Carabidae

Calathus micropterus (Duftschmid, 1812) 1 0.02 2.27

Harpalus signaticornis (Duftschmid, 1812) 1 0.02 2.27

Histeridae

Gnathoncus buyssoni Auzat, 1917 22 0.50 36.36 16 0.36 29.55 16 0.36 18.18 8 0.18 11.36

Margarinotus striola (C.R. Sahlberg, 1819) 24 0.54 22.73 1 0.02 2.27

Platysoma deplanatum (Gyllenhal, 1808) 2 0.05 4.55 2 0.05 4.55

Platysoma elongatum (Thunberg, 1787) 17 0.39 27.27 1 0.02 2.27 1 0.02 2.27

Platysoma lineare Erichson, 1834 20 0.45 27.27 2 0.05 4.55

Silphidae

Necrodes littoralis (Linnaeus, 1758) 7 0.16 13.64 6 0.14 9.09 4 0.09 9.09

Nicrophorus vespilloides Herbst, 1783 3 0.07 2.27

Oiceoptoma thoracicum (Linnaeus, 1758) 12 0.27 18.18 1 0.02 2.27 1 0.02 2.27

Staphylinidae

Staphylinidae sp. 775 17.61 95.45 291 6.61 79.55 151 3.43 75.00 22 0.50 29.55

Euplectus sp. 1 0.02 2.27

Quedius dilatatus (Fabricius, 1787) 5 0.11 6.82 22 0.50 15.91 15 0.34 13.63 2 0.05 4.55

Scarabaeidae

Cetonia aurata (Linnaeus, 1758) 3 0.07 6.82 4 0.09 9.09 1 0.02 2.27 1 0.02 2.27

Gnorimus variabilis (Linnaeus, 1758) 2 0.05 2.27 3 0.07 4.55 1 0.02 2.27 1 0.02 2.27

Oxythyrea funesta (Poda von Neuhaus, 1761) 1 0.02 2.27

Protaetia fieberi (Kraatz, 1880) 4 0.09 9.09 4 0.09 9.09 6 0.14 9.09
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Table A1. Cont.

Taxon Name 1.5 m 3 m 7 m 12 m

T M O T M O T M O T M O

Protaetia marmorata (Fabricus, 1792) 100 2.27 68.18 219 4.98 68.18 307 6.98 79.55 139 3.16 72.73

Potosia cuprea volhyniensis (Gory & Percheron, 1833) 14 0.32 22.73 12 0.27 25.00 5 0.11 11.36

Scirtidae

Contacyphon sp. 1 0.02 2.27

Contacyphon padi (Linnaeus, 1758) 1 0.02 2.27

Contacyphon pubescens (Fabricius, 1792) 1 0.02 2.27

Throscidae

Trixagus sp. 1 0.02 2.27 1 0.02 2.27

Elateridae

Agrypnus murinus (Linnaeus, 1758) 2 0.05 4.55

Ampedus balteatus (Linnaeus, 1758) 5 0.11 9.09 1 0.02 2.27 1 0.02 2.27

Ampedus cinnabarinus (Eschscholtz, 1829) 1 0.02 2.27

Ampedus nigroflavus (Goeze, 1777) 2 0.05 4.55 2 0.05 4.55

Ampedus pomorum (Herbst, 1784) 2 0.05 4.55 3 0.07 6.82

Ampedus praeustus (Fabricius, 1792) 1 0.02 2.27

Athous subfuscus (O.F. Müller, 1764) 1 0.02 2.27 1 0.02 2.27

Dalopius marginatus (Linnaeus, 1758) 1 0.02 2.27 4 0.09 4.55 3 0.07 4.55 1 0.02 2.27

Denticollis borealis (Paykull, 1800) 1 0.02 2.27

Elater ferrugineus Linnaeus, 1758 1 0.02 2.27 1 0.02 2.27

Melanotus castanipes (Paykull, 1800) 3 0.07 6.82 1 0.02 2.27

Prosternon tesselatum (Linnaeus, 1758) 23 0.52 15.91 5 0.11 9.09 2 0.05 4.55

Selatosomus aeneus (Linnaeus, 1758) 1 0.02 2.27 1 0.02 2.27 1 0.02 2.27

Buprestidae

Dircaea quadriguttata (Paykull, 1798) 1 0.02 2.27
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Table A1. Cont.

Taxon Name 1.5 m 3 m 7 m 12 m

T M O T M O T M O T M O

Cantharidae

Cantharis nigricans O.F. Müller, 1776 2 0.05 4.55 1 0.02 2.27

Cantharis pellucida Fabricius, 1792 1 0.02 2.27

Rhagonycha nigripes (W. Redtenbacher, 1842) 2 0.05 4.55

Dermestidae

Attagenus schaefferi (Herbst, 1792) 8 0.18 9.09 1 0.02 2.27 6 0.14 9.09 1 0.02 2.27

Ctesias serra (Fabricius, 1792) 24 0.54 15.91 73 1.66 22.73 81 1.84 20.45 37 0.84 22.73

Dermestes lardarius Linnaeus, 1758 1 0.02 2.27

Megatoma undata (Linnaeus, 1758) 4 0.09 9.09 3 0.07 6.82

Trogoderma glabrum (Herbst, 1783) 12 0.27 15.91 14 0.32 20.45 19 0.43 18.18 1 0.02 2.27

Cleridae

Thanasimus femoralis (Zetterstedt, 1828) 1 0.02 2.27 2 0.05 4.55 1 0.02 2.27 1 0.02 2.27

Thanasimus formicarius (Linnaeus, 1758) 4 0.09 9.09

Melyridae

Aplocnemus nigricornis (Fabricius, 1792) 2 0.05 4.55 1 0.02 2.27

Dasytes fusculus (Illiger, 1801) 1 0.02 2.27

Dasytes niger (Linnaeus, 1761) 1 0.02 2.27

Malachius bipustulatus (Linnaeus, 1758) 2 0.05

Erotylidae

Dacne bipustulata (Thunberg, 1781) 1 0.02 2.27

Triplax russica (Linnaeus, 1758) 1 0.02 2.27 1 0.02 2.27

Monotomidae

Rhizophagus bipustulatus (Fabricius, 1792) 1 0.02 2.27

Rhizophagus cribratus (Gyllenhal, 1827) 1 0.02 2.27

Rhizophagus fenestralis (Linnaeus, 1758) 8 0.18 9.09 9 0.20 13.63 6 0.14 4.55
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Table A1. Cont.

Taxon Name 1.5 m 3 m 7 m 12 m

T M O T M O T M O T M O

Nitidulidae

Carpophilus hemipterus (Linnaeus, 1758) 1 0.02 2.27 1 0.02 2.27

Carpophilus marginellus Motschulsky, 1858 1 0.02 2.27 1 0.02 2.27

Cryptarcha strigata (Fabricius, 1787) 1476 33.55 100 2074 47.14 97.72 1608 24.27 95.45 651 14.80 90.91

Cryptarcha undata (G.-A. Olivier, 1790) 75 1.70 61.36 162 3.68 77.27 123 2.80 79.55 63 1.43 68.18

Cychramus luteus (Fabricius, 1787) 22 0.50 18.18 9 0.20 11.36

Cychramus variegatus (Herbst, 1792) 2 0.05 4.55 1 0.02 2.27

Epuraea sp. 161 3.66 79.55 90 2.05 63.64 26 0.59 27.27 8 0.18 13.63

Epuraea guttata (G.-A. Olivier, 1811) 4 0.09 9.09 3 0.07 6.82 1 0.02 2.27

Glischrochilus grandis (Tournier, 1872) 1136 25.82 68.18 1345 30.57 54.55 489 11.11 43.18 58 1.32 38.64

Glischrochilus hortensis (Geoffroy, 1785) 277 6.30 56.82 173 3.93 56.82 62 1.41 27.27 7 0.16 13.63

Glischrochilus quadriguttatus (Fabricius, 1777) 48 1.09 6.82 3 0.07 6.82 1 0.02 2.27

Glischrochilus quadripunctatus (Linnaeus, 1758) 95 2.16 40.91 41 0.93 27.27 15 0.34 13.63 19 0.43 6.82

Glischrochilus quadrisignatus (Say, 1835) 2 0.05 4.55 2 0.05 4.55 1 0.02 2.27

Ipidia binotata Reitter, 1875 1 0.02 2.27 1 0.02 2.27

Nitidula bipunctata (Linnaeus, 1758) 2 0.05 2.27

Omosita depressa (Linnaeus, 1758) 3 0.07 6.82

Omosita discoidea (Fabricius, 1775) 2 0.05 4.55

Pityophagus ferrugineus (Linnaeus, 1761) 1 0.02 2.27

Soronia grisea (Linnaeus, 1758) 85 1.93 50.00 131 2.98 54.55 60 1.36 40.91 22 0.50 31.82

Soronia punctatissima (Illiger, 1794) 6 0.14 9.09 1 0.02 2.27

Silvanidae

Silvanus bidentatus (Fabricius, 1792) 2 0.05 4.55

Cucujidae

Pediacus depressus (Herbst, 1797) 31 0.70 27.27 9 0.20 20.45 1 0.02 2.27
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Table A1. Cont.

Taxon Name 1.5 m 3 m 7 m 12 m

T M O T M O T M O T M O

Laemophloeidae

Cryptolestes sp. 1 0.02 2.27

Endomychidae

Mycetina cruciata (Schaller, 1783) 1 0.02 2.27

Coccinellidae

Anatis ocellata (Linnaeus, 1758) 3 0.07 4.55 4 0.09 6.82

Calvia quatuordecimguttata (Linnaeus, 1758) 1 0.02 2.27 1 0.02 2.27 1 0.02 2.27

Halyzia sedecimguttata (Linnaeus, 1758) 1 0.02 2.27 7 0.16 15.91 5 0.11 11.36 1 0.02 2.27

Harmonia quadripunctata (Pontoppidan, 1763) 1 0.02 2.27

Mycetophagidae

Litargus connexus (Geoffroy, 1785) 5 0.11 9.09 6 0.14 11.36 1 0.02 2.27 1 0.02 2.27

Mycetophagus piceus (Fabricius, 1777) 1 0.02 2.27

Mycetophagus quadripustulatus (Linnaeus, 1761) 1 0.02 2.27

Ciidae

Orthocis alni (Gyllenhal, 1813) 1 0.02 2.27

Melandryidae

Dircaea quadriguttata (Paykull, 1798) 1 0.02 2.27

Orchesia fasciata (Illiger, 1798) 4 0.09 6.82

Mordellidae

Mordellistena humeralis (Linnaeus, 1758) 1 0.02 2.27

Tomoxia bucephala A. Costa, 1854 1 0.02 2.27

Tenebrionidae

Bolitophagus reticulatus (Linnaeus, 1767) 1 0.02 2.27

Pseudocistela ceramboides (Linnaeus, 1758) 1 0.02 2.27
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Table A1. Cont.

Taxon Name 1.5 m 3 m 7 m 12 m

T M O T M O T M O T M O

Oedemeridae

Chrysanthia geniculata W.L.E. Schmidt, 1846 1 0.02 2.27

Chrysanthia viridissima (Linnaeus, 1758) 5 0.11 6.82

Oedemera lurida (Marsham, 1802) 1 0.02 2.27

Pythidae

Pytho depressus (Linnaeus, 1767) 1 0.02 2.27

Pyrochroidae

Schizotus pectinicornis (Linnaeus, 1758) 1 0.02 2.27

Anthicidae

Notoxus monoceros (Linnaeus, 1761) 1 0.02 2.27

Scraptiidae

Anaspis sp. 3 0.07 6.82

Cerambycidae

Anastrangalia reyi (Heyden, 1889) 1 0.02 2.27

Aromia moschata (Linnaeus, 1758) 2 0.05 4.55 1 0.02 2.27 1 0.02 2.27

Cortodera femorata (Fabricius, 1787) 1 0.02 2.27

Dinoptera collaris (Linnaeus, 1758) 1 0.02 2.27 1 0.02 2.27

Leptura quadrifasciata Linnaeus, 1758 34 0.77 31.82 17 0.39 20.45 9 0.20 6.82 1 0.02 2.27

Leptura thoracica Creutzer, 1799 111 2.52 38.64 128 2.91 40.91 116 2.64 34.09 77 1.75 36.36

Lepturalia nigripes (De Geer, 1775) 5 0.11 9.09 2 0.05 4.55 2 0.05 4.55 1 0.02 2.27

Molorchus minor (Linnaeus, 1758) 1 0.02 2.27 1 0.02 2.27

Necydalis major Linnaeus, 1758 5 0.11 6.82 3 0.07 4.55 4 0.09 9.09

Obrium cantharinum (Linnaeus, 1767) 1 0.02 2.27

Pachyta quadrimaculata (Linnaeus, 1758) 4 0.09 9.09 8 0.18 13.63 4 0.09 6.82 1 0.02 2.27

Phymatodes testaceus (Linnaeus, 1758) 1 0.02 2.27
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Table A1. Cont.

Taxon Name 1.5 m 3 m 7 m 12 m

T M O T M O T M O T M O

Plagionotus detritus (Linnaeus, 1758) 1 0.02 2.27

Rhagium inquisitor (Linnaeus, 1758) 10 0.23 9.09 6 0.14 9.09 1 0.02 2.27

Rhagium mordax (De Geer, 1775) 389 8.84 52.27 169 3.84 40.91 46 1.05 34.09 11 0.25 15.91

Rutpela maculata (Poda von Neuhaus, 1761) 1 0.02 2.27

Stenocorus meridianus (Linnaeus, 1758) 1 0.02 2.27

Stenurella melanura (Linnaeus, 1758) 1 0.02 2.27

Stictoleptura maculicornis (De Geer, 1775) 1 0.02 2.27 1 0.02 2.27 1 0.02 2.27

Chrysomelidae

Cryptocephalus flavipes Fabricius, 1781 1 0.02 2.27

Phyllotreta atra (Fabricius, 1775) 1 0.02 2.27

Anthribidae

Gonotropis dorsalis (Gyllenhal, 1813) 1 0.02 2.27

Tropideres albirostris (Schaller, 1783) 2 0.05 4.55

Nemonychidae

Cimberis attelaboides (Fabricius, 1787) 1 0.02 2.27 2 0.05 4.55 6 0.14 11.36

Curculionidae

Anisandrus dispar (Fabricius, 1792) 149 3.39 20.45 152 3.45 25.00 104 2.36 15.91 58 0.32 11.36

Anthonomus phyllocola (Herbst, 1795) 1 0.02 2.27

Hylastes brunneus (Erichson, 1836) 1 0.02 2.27

Phyllobius argentatus (Linnaeus, 1758) 1 0.02 2.27

Polydrusus cervinus (Linnaeus, 1758) 1 0.02 2.27

Tomicus minor (Hartig, 1834) 1 0.02 2.27

Xyleborinus saxesenii (Ratzeburg, 1837) 1 0.02 2.27

Total of individuals 5281 5273 3335 1228
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47. Robertson, J.; Ślipiński, A.; Moulton, M.; Shockley, F.W.; Giorgi, A.; Lord, N.P.; McKenna, D.D.; Tomaszewska, W.; Forrester, J.;
Miller, K.B.; et al. Phylogeny and classification of Cucujoidea and the recognition of a new superfamily Coccinelloidea (Coleoptera:
Cucujiformia). Syst. Entomol. 2015, 40, 745–778. [CrossRef]

48. Alonso-Zarazaga, M.A.; Barrios, H.; Borovec, R.; Bouchard, P.; Caldara, R.; Colonnelli, E.; Gültekin, L.; Hlaváč, P.; Korotyaev, B.;
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